算法分析-有效的学习方法(影印版)
本书主要目标是提高读者关于算法对程序效率的影响等问题的认知水平,并培养读者分析程序中的算法所必需的技巧。各章材料以激发读者有效的、协同的学习方法的形式讲述。通过全面的论述和完整的数学推导,本书帮助读者最大限度地理解基本概念。 本书内容包括促使学生参与其中的大量程序设计课题。书中所有算法以伪码形式给出,使得具备条件表达式、循环与递归方面知识的读者均易于理解。本书以简洁的写作风格向读...
本书主要目标是提高读者关于算法对程序效率的影响等问题的认知水平,并培养读者分析程序中的算法所必需的技巧。各章材料以激发读者有效的、协同的学习方法的形式讲述。通过全面的论述和完整的数学推导,本书帮助读者最大限度地理解基本概念。 本书内容包括促使学生参与其中的大量程序设计课题。书中所有算法以伪码形式给出,使得具备条件表达式、循环与递归方面知识的读者均易于理解。本书以简洁的写作风格向读...
三位统计学家高屋建瓴,面向非统计专业的读者介绍重要的统计学概念,而非纯数学理论 借助于一个通用概念框架,描述多个学科的重要思想,比如医学、生物学、金融学和营销 《统计学习要素》(第2版)包含人工智能中用到的许多代表性主题,比如图模型、随机森林、集成方法、Lasso最小角度回归和路径算法、非负矩阵分解和频谱聚类。此外,还用一章篇幅来介绍“宽”数据(p大于n)的方法,包括多次测...
《强化学习精要:核心算法与TensorFlow 实现》用通俗幽默的语言深入浅出地介绍了强化学习的基本算法与代码实现,为读者构建了一个完整的强化学习知识体系,同时介绍了这些算法的具体实现方式。从基本的马尔可夫决策过程,到各种复杂的强化学习算法,读者都可以从本书中学习到。本书除了介绍这些算法的原理,还深入分析了算法之间的内在联系,可以帮助读者举一反三,掌握算法精髓。书中介绍的代码可以帮助读...
《华章数学译丛:数学建模(原书第5版)》旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。 《华章数学译丛:数学建模(原书第5版)》对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为...
本书主要介绍了多智能体机器人强化学习的相关内容。全书共6章,首先介绍了几种常用的监督式学习方法,在此基础上,介绍了单智能体强化学习中的学习结构、值函数、马尔科夫决策过程、策略迭代、时间差分学习、Q学习和资格迹等概念和方法。然后,介绍了双人矩阵博弈问题、多人随机博弈学习问题,并通过3种博弈游戏详细介绍了纳什均衡、学习算法、学习自动机、滞后锚算法等内容,并提出LR-I滞后锚算法和指数移动平...
《趣学算法》作者又一力作,图解+原理+代码+实战,带你轻松学习数据结构与算法。 ◎编辑推荐: (1)完美图解+丰富实例,复杂问题简单化 为基本操作配以图解,用数据结构解决生活中的实际问题,学习过程更加轻松有趣。 (2)原理分析+实战演练,真正地学以致用 通俗化讲解基础知识,在实战中体会数据结构的设计和操作,锻炼独立思考的能力。 (3)配套代码+在线答...
本书介绍了统计学习理论和支持向量机的关键思想、结论和方法,以及该领域的最新进展。统计学习理论是针对小样本情况研究统计学习规律的理论,是传统统计学的重要发展和补充。其核心思想是通过控制学习机器的容量实现对推广能力的控制。由Springer-Verlag出版社授权出版。
书名:机器学习导论 作者:[美]米罗斯拉夫·库巴特 译者: ISBN:9787111548683 出版社:机械工业出版社 出版时间:2016-11-1 格式:epub/mobi/azw3/pdf 页数:309 豆瓣评分: 7.7 书籍简介: […]
机器学习一直是人工智能研究领域的重要方向,而在大数据时代,来自Web 的数据采集、挖掘、应用技术又越来越受到瞩目,并创造着巨大的价值。本书是有关Web数据挖掘和机器学习技术的一本知名的著作,第2 版进一步加入了本领域最新的研究内容和应用案例,介绍了统计学、结构建模、推荐系统、数据分类、点击预测、深度学习、效果评估、数据采集等众多方面的内容。《智能Web算法(第2版)》内容翔实、案例生动...
◎编辑推荐 ☆再版九次的经典教材,系统阐述生物学基础知识 本书涵盖生物学概述、细胞生物学、遗传学、动物、植物、进化学与生态等,贴近高等院校普通生物学课程教学内容,适合中学到大学的生物学衔接、大学生物学通识课程等使用。每章设计重点知识梳理和测验,帮助读者更好地掌握生物学基本知识和学习方式,为生物学的进阶学习打好坚实基础。 ☆借助丰富的生物模式图,形象解释复杂的生命奥秘 ...