Quantitative Social Science

书名:Quantitative Social ScienceAnIntroduction
作者:KosukeImai
译者:
ISBN:9780691175461
出版社:PrincetonUniversityPress
出版时间:2017-3-14
格式:epub/mobi/azw3/pdf
页数:432
豆瓣评分: 8.9

书籍简介:

Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it—or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science. Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results—it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior. Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors. Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data science Provides hands-on instruction using R programming, not paper-and-pencil statistics Includes more than forty data sets from actual research for students to test their skills on Covers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical tools Features a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercises Offers a solid foundation for further study Comes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides

作者简介:

Kosuke Imai is professor of politics and founding director of the Program in Statistics and Machine Learning at Princeton University.

书友短评:

@ Water Notes 更好地形容这本书的话大概是r in statistical analysis. 以社科问题为案例导入,讲怎么用r来捯饬数据,再讲一点点原理。难度: 入门(r语言入门+统计入门)。好的是涉及比较多,包括因果推断、文本分析、社会网络分析、传统的统计方法。重点在r in practice @ fario 寒假还得再突击一下… @ 夜澜轻风 相当好的入门教材 @ 抹茶拿铁 R小白的学习神器 @ Clarence 上来就causality,然后再regression,最后才概率统计,虽然作者说是给本科生用的,但是我发现本科生吃不消。可能我们学校的本科生太弱了。。 @ Graciosa 很好的入门书,虽然介绍上说本书适用于本科生,但事实上对于想要掌握量化社会科学基本方法的研究生来说也已经够用。本科学量化课的时候,老师通常一上来就讲标准误、方差和如何推导相关系数,但Imai直接从DiD的基本原理讲起,穿插的顶刊论文数据案例也非常有趣。 @ 豆友63437281 管窥一下思路,但光看这本只能了解一个大概,并不深入 @ Water Notes 更好地形容这本书的话大概是r in statistical analysis. 以社科问题为案例导入,讲怎么用r来捯饬数据,再讲一点点原理。难度: 入门(r语言入门+统计入门)。好的是涉及比较多,包括因果推断、文本分析、社会网络分析、传统的统计方法。重点在r in practice

书籍目录

List of Tables xiii
List of Figures xv
Preface xvii
1 Introduction 1
1.1 Overview of the Book 3
1.2 How to Use this Book 7
1.3 Introduction to R 10
1.3.1 Arithmetic Operations 10
1.3.2 Objects 12
1.3.3 Vectors 14
1.3.4 Functions 16
1.3.5 Data Files 20
1.3.6 Saving Objects 23
1.3.7 Packages 24
1.3.8 Programming and Learning Tips 25
1.4 Summary 27
1.5 Exercises 28
1.5.1 Bias in Self-Reported Turnout 28
1.5.2 Understanding World Population Dynamics 29
2 Causality 32
2.1 Racial Discrimination in the Labor Market 32
2.2 Subsetting the Data in R 36
2.2.1 Logical Values and Operators 37
2.2.2 Relational Operators 39
2.2.3 Subsetting 40
2.2.4 Simple Conditional Statements 43
2.2.5 Factor Variables 44
2.3 Causal Effects and the Counterfactual 46
2.4 Randomized Controlled Trials 48
2.4.1 The Role of Randomization 49
2.4.2 Social Pressure and Voter Turnout 51
2.5 Observational Studies 54
2.5.1 Minimum Wage and Unemployment 54
2.5.2 Confounding Bias 57
2.5.3 Before-and-After and Difference-in-Differences Designs 60
2.6 Descriptive Statistics for a Single Variable 63
2.6.1 Quantiles 63
2.6.2 Standard Deviation 66
2.7 Summary 68
2.8 Exercises 69
2.8.1 Efficacy of Small Class Size in Early Education 69
2.8.2 Changing Minds on Gay Marriage 71
2.8.3 Success of Leader Assassination as a Natural Experiment 73
3 Measurement 75
3.1 Measuring Civilian Victimization during Wartime 75
3.2 Handling Missing Data in R 78
3.3 Visualizing the Univariate Distribution 80
3.3.1 Bar Plot 80
3.3.2 Histogram 81
3.3.3 Box Plot 85
3.3.4 Printing and Saving Graphs 87
3.4 Survey Sampling 88
3.4.1 The Role of Randomization 89
3.4.2 Nonresponse and Other Sources of Bias 93
3.5 Measuring Political Polarization 96
3.6 Summarizing Bivariate Relationships 97
3.6.1 Scatter Plot 98
3.6.2 Correlation 101
3.6.3 Quantile-Quantile Plot 105
3.7 Clustering 108
3.7.1 Matrix in R 108
3.7.2 List in R 110
3.7.3 The k-Means Algorithm 111
3.8 Summary 115
3.9 Exercises 116
3.9.1 Changing Minds on Gay Marriage: Revisited 116
3.9.2 Political Efficacy in China and Mexico 118
3.9.3 Voting in the United Nations General Assembly 120
4 Prediction 123
4.1 Predicting Election Outcomes 123
4.1.1 Loops in R 124
4.1.2 General Conditional Statements in R 127
4.1.3 Poll Predictions 130
4.2 Linear Regression 139
4.2.1 Facial Appearance and Election Outcomes 139
4.2.2 Correlation and Scatter Plots 141
4.2.3 Least Squares 143
4.2.4 Regression towards the Mean 148
4.2.5 Merging Data Sets in R 149
4.2.6 Model Fit 156
4.3 Regression and Causation 161
4.3.1 Randomized Experiments 162
4.3.2 Regression with Multiple Predictors 165
4.3.3 Heterogenous Treatment Effects 170
4.3.4 Regression Discontinuity Design 176
4.4 Summary 181
4.5 Exercises 182
4.5.1 Prediction Based on Betting Markets 182
4.5.2 Election and Conditional Cash Transfer Program in Mexico 184
4.5.3 Government Transfer and Poverty Reduction in Brazil 187
5 Discovery 189
5.1 Textual Data 189
5.1.1 The Disputed Authorship of The Federalist Papers 189
5.1.2 Document-Term Matrix 194
5.1.3 Topic Discovery 195
5.1.4 Authorship Prediction 200
5.1.5 Cross Validation 202
5.2 Network Data 205
5.2.1 Marriage Network in Renaissance Florence 205
5.2.2 Undirected Graph and Centrality Measures 207
5.2.3 Twitter-Following Network 211
5.2.4 Directed Graph and Centrality 213
5.3 Spatial Data 220
5.3.1 The 1854 Cholera Outbreak in London 220
5.3.2 Spatial Data in R 223
5.3.3 Colors in R 226
5.3.4 US Presidential Elections 228
5.3.5 Expansion of Walmart 231
5.3.6 Animation in R 233
5.4 Summary 235
5.5 Exercises 236
5.5.1 Analyzing the Preambles of Constitutions 236
5.5.2 International Trade Network 238
5.5.3 Mapping US Presidential Election Results over Time 239
6 Probability 242
6.1 Probability 242
6.1.1 Frequentist versus Bayesian 242
6.1.2 Definition and Axioms 244
6.1.3 Permutations 247
6.1.4 Sampling with and without Replacement 250
6.1.5 Combinations 252
6.2 Conditional Probability 254
6.2.1 Conditional, Marginal, and Joint Probabilities 254
6.2.2 Independence 261
6.2.3 Bayes' Rule 266
6.2.4 Predicting Race Using Surname and Residence Location 268
6.3 Random Variables and Probability Distributions 277
6.3.1 Random Variables 278
6.3.2 Bernoulli and Uniform Distributions 278
6.3.3 Binomial Distribution 282
6.3.4 Normal Distribution 286
6.3.5 Expectation and Variance 292
6.3.6 Predicting Election Outcomes with Uncertainty 296
6.4 Large Sample Theorems 300
6.4.1 The Law of Large Numbers 300
6.4.2 The Central Limit Theorem 302
6.5 Summary 306
6.6 Exercises 307
6.6.1 The Mathematics of Enigma 307
6.6.2 A Probability Model for Betting Market Election Prediction 309
6.6.3 Election Fraud in Russia 310
7 Uncertainty 314
7.1 Estimation 314
7.1.1 Unbiasedness and Consistency 315
7.1.2 Standard Error 322
7.1.3 Confidence Intervals 326
7.1.4 Margin of Error and Sample Size Calculation in Polls 332
7.1.5 Analysis of Randomized Controlled Trials 336
7.1.6 Analysis Based on Student's t-Distribution 339
7.2 Hypothesis Testing 342
7.2.1 Tea-Tasting Experiment 342
7.2.2 The General Framework 346
7.2.3 One-Sample Tests 350
7.2.4 Two-Sample Tests 356
7.2.5 Pitfalls of Hypothesis Testing 361
7.2.6 Power Analysis 363
7.3 Linear Regression Model with Uncertainty 370
7.3.1 Linear Regression as a Generative Model 370
7.3.2 Unbiasedness of Estimated Coefficients 375
7.3.3 Standard Errors of Estimated Coefficients 378
7.3.4 Inference about Coefficients 380
7.3.5 Inference about Predictions 384
7.4 Summary 389
7.5 Exercises 390
7.5.1 Sex Ratio and the Price of Agricultural Crops in China 390
7.5.2 File Drawer and Publication Bias in Academic Research 392
7.5.3 The 1932 German Election in the Weimar Republic 394
8 Next 397
General Index 401
R Index 406
· · · · · ·

  • 1.5.1 2 根据投票年龄人口或VAP计算投票率原文:Calculate the turnout rate based on the voting age population or VAP.意思是根据投票年龄人口(VAP)计算投票率1.5.1 6 其次,计算调整后的VAP投票率,注意减去2008年的选票总数原文:substract the number of overseas ballots counted from the total ballots in 2008意思是,注意将海外选民统计的总票数从总票数中减去1.5.2 2 公式部分 [x, x+ε)年龄段女性人数原文:number of births to women of age[x, x+ε)问题部分:这些AFSRs的模式对瑞典和肯尼亚妇女的生育有什么影响?What does the pattern of these AFSRs say about reproduction among Sweden and Kenya
    —— 引自章节:1.5 练习
  • 向更透明和数据驱动的探索转变,需要社会科学的研究者学习如何分析数据,解释结果,并有效地表达他们的实证研究结果。传统上,入门统计课程的重点是教学生基本的统计概念,让他们用纸和铅笔,或充其量用一个计算器进行科学计算。虽然这些概念在本书中仍然很重要,但这种传统的方法不能满足当前社会的需求。通过学习常见的统计概念和方法来实现“统计素养”是不够的。相反,所有社会科学的研究者都应该掌握基本的数据分析技能以便利用大量的机会从数据中学习,并通数据驱动的探索为社会做出贡献。
    —— 引自章节:一、引言
  • 添加微信公众号:好书天下获取

    添加微信公众号:“好书天下”获取书籍好书天下 » Quantitative Social Science
    分享到: 更多 (0)

    评论 抢沙发

    评论前必须登录!

     

    添加微信公众号:“好书天下”获取书籍

    当当网十五万种图书