书名:大數據的傲慢與偏見一個「圈內數學家」對演算法霸權的警告與揭發
作者:CathyO’Neil
译者:許瑞宋
ISBN:9789865695927
出版社:大寫出版
出版时间:
格式:epub/mobi/azw3/pdf
页数:
豆瓣评分: 7.2
书籍简介:
大數據不缺推崇者,但我不是。 甚至,我要稱它是這個時代的「數學毀滅性武器」。 一名前華爾街量化分析師提出警告:現代生活中無所不在的的數學模型可能撕裂社會! 紐約時報非文學暢銷書 亞馬遜書店「商業統計」暢銷書 《紐約時報》書評2016年最值得注意的書 《波士頓環球報》2016年最佳書籍 《連線》(Wired)2016年必讀的選擇之一 《財星》雜誌2016年選書 《MIT科技評論》2016年編輯選書 《科克斯》書評A Kirkus 2016年最佳書籍 芝加哥公共圖書館2016年最佳書籍 《自然》期刊官網(Nature.com)2016年最佳書籍 《紐約時報》2016年度編輯選書 這是個演算法包圍現代公民的時代!演算法在幕後影響著我們生活的各種決定,包括我們上什麼學校、能否借到汽車貸款,以及醫療保險必須支付多少保費,愈來愈多判斷是由數學模型,而非某些人所做出。這一切看似公平:因為所有人是根據相同的規則評斷,不受偏見影響。 對熱情的「問題解決者」來說,大數據像仙境,它蒐集資訊、再運用數學模型,使我們得以更有效地調配資源、篩選最優的人事物、並做出最好的決定,這些熱情的宣揚者更是四處宣傳大數據應用的威力。 但是,曾在典型數據分析圈內工作的凱西.歐尼爾不是上述這種人。 她在本書指出,事實與我們想的恰恰相反!這些數學模型不透明、不受管制,即便出錯,受害者往往無法申訴。最令人不安的是,這些模型會「強化歧視」,例如,貧窮學生在申請學貸時,可能因自家的郵遞區號,被審核貸款的數學模型視為還款高風險者,因而無法獲得貸款……。這類問題會形成惡性循環——獎勵幸運兒、懲罰遭踐踏的人,創造出危害民主的「有毒雞尾酒」。 歡迎認清大數據的黑暗面 歐尼爾在本書中揭開對我們人生各階段有巨大影響的各種黑箱數學模型,不管我們願不願意,演算法系統都已經為我們打上「分數」。 當前許多數學模型已經失控濫用、還自作主張地替教師和學生評鑑、篩選履歷表、審核貸款、評估員工績效、鎖定目標選民、決定假釋名單,以及監測我們的健康狀態,決定我們個人及社會的未來。 歐尼爾呼籲:在這個人人都被迫擁有自己在某種演算系統中持有「e化評分」的時代,那些建立模型的人應該為他們所創造出來的演算法負起更多責任,而政策制定者更應該負起監督管理的責任。這本重要著作使我們得以提出關鍵問題、揭露這些「數學毀滅性武器」的真相和要求變革。 強力推薦 ……這些源自人性黑暗面的大數據與人工智能,如果不受監管,有可能撕裂社會,甚至讓人類文明崩潰。但監管的標準該如何制定?誰來負責監管?如果監管者跟不上時代,甚至不可信賴,人類又該如何在AI專政的虛擬實境中維持人性尊嚴?-胡一天(源鉑資本創辦人暨執行長,源鉑情報總編輯,《風傳媒》專欄作家) 生活在現代的社會裡,完全不被數學模型監控幾乎是不可能,這是一種最安靜的恐怖主義。然而,數學模型真的是我們生存世界的絕對真理?當我們盲目地將自己交付給它並且據此生存,是否有可能我們所擁抱的真理,只是讓我們的世界變得更加荒謬扭曲……-陳智凱(國立台北教育大學文化創意產業經營學系所教授) 大數據浪潮下必讀的一本書。當用數據模型替每個人打分數時,舉凡信用、教育、健康等方面,帶來了潛在的黑箱、歧視、道德危機。不論是數據從業人員或一般大眾,都應閱讀本書,建立正確的風險認知。-楊立偉(意藍科技股份有限公司董事總經理、創辦人,台灣大學工商管理學系兼任助理教授) 進行假設檢定與決策時,偽正(型1錯誤)率和偽負(型2錯誤)率常會存在。本書提醒我們必須檢驗數據的正確性,降低二種錯誤率,並考慮錯誤所造成的影響,進行回饋的模型校正,才能應用大數據的分析,作出合適的決策。-盧鴻興(國立交通大學統計所教授暨大數據研究中心主任) 大數據、演算法、人工智慧,這些躲在數學背後的當紅名詞,正悄悄改變世界。作者批評它們變成一種神祇,隱形,至高無上,權力無限,且不受監督,她的警語,正可作為社群網路時代的急迫功課。-黃哲斌(新聞工作者) 當手上只有榔頭,看什麼都像是釘子。現在的「大數據」就像一把神奇的榔頭,不管是為其著迷還是焦慮,人們以為可以拿大數據來解決各種問題,但事實並非如此。如果你想真正了解大數據,受益而不受害,這本書便是必讀。-鄭國威(PanSci泛科學總編輯) 凱西.歐尼爾是大數據的內行人,她看到的情況並不美好。本書揭露那些假裝成中性數學工具,但剝削弱勢、扭曲真相的演算法。本書睿智、犀利,是我們迫切需要的著作。-艾倫伯格(Jordan Ellenberg)、威斯康辛大學麥迪遜校區教授、《數學教你不犯錯》(How Not To Be Wrong)作者 本書利用令人不安的真實案例和生動的敘事,難能可貴地說明政府和大企業如何利用無形的演算法和複雜的數學模型,損害平等並增強私人權力。本書以明晰治黑箱、以理解治混淆,有助我們在為時已晚之前扭轉局面。-泰勒(Astra Taylor)、《人民平台》(The People’s Platform)作者 在這本傑作中,凱西.歐尼爾利用她的數學專長和對社會正義的熱情,戳破大數據美好無瑕的假象。她有力地說明了數學正如何被用來壓榨弱勢和擴大不平等。她的分析精湛、文筆迷人,她的發現則令人不安。-博伊德(danah boyd)、數據與社會研究所創始人、《鍵盤參與時代來了!》(It’s Complicated)作者 雖然我是職業數學家,我在閱讀這本書之前,對大數據可以如何暗中為害毫無概念。本書內容令人害怕,但讀起來意外有趣:歐尼爾描述的由演算法主導的世界不乏黑色幽默和憤怒,就像當代的《奇愛博士》(Dr. Strangelove)或《第22條軍規》(Catch-22)。這是一本非常重要的著作,令人大開眼界又深感不安。-斯托蓋茨(Steven Strogatz)、康乃爾大學教授、《X的奇幻旅程》(The Joy of x)作者 這本傑作直白地呼籲大家有所行動。它承認數學模型不會消失:模型用來找出需要幫助的人,可以產生神奇的作用,但如果用來懲罰人和剝奪某些人的權利,則可以成為非常恐怖的工具。凱西.歐尼爾這本書之所以重要,恰恰是因為她相信數據科學的效用。本書有如一個關鍵的速成課程,說明了我們為何必須審視周遭的系統並要求改善。-達克特羅(Cory Doctorow)、《小老弟》(Little Brother)作者、波音波音網站(Boing Boing)編輯 許多演算法受制於權力不平等和偏見。如果你不想受這種演算法支配,請看凱西.歐尼爾的這本書,以便解構傲慢的體制日趨嚴重的最新暴行。-納德(Ralph Nader)、《任何速度都不安全》(Unsafe at Any Speed)作者 下次碰到有人毫無保留地讚美大數據的奇蹟,你可以向他出示本書。這是有益之舉。-薩蒙(Felix Salmon)、Fusion電視頻道 從找工作到找配偶,預測型演算法正悄悄地塑造和控制我們的命運。凱西.歐尼爾帶我們走過一段令人憤慨和驚奇的旅程,其文字就像是與讀者交談。這是一本重要著作。我們必須處理科技產生的問題。-提拉多(Linda Tirado)、《當收入只夠填飽肚子》(Hand to Mouth: Living in Bootstrap America)作者
作者简介:
作者簡介
凱西.歐尼爾(Cathy O’Neil)
數據科學家,部落格mathbabe.org網主。自哈佛大學取得數學哲學博士學位,曾任教於巴納德學院,隨後投身金融業,任職於對沖基金公司德劭(D.E. Shaw)。離開金融業後曾於多家新創企業擔任數據科學家,負責建立預測人們購買和點擊行為的模型。哥倫比亞大學數據新聞學萊德計畫(Lede Program in Data Journalism)發起人,著有《數據科學實踐》(Doing Data Science)。每週參與播客節目Slate Money。
譯者簡介
許瑞宋
香港科技大學會計系畢業,曾任路透中文新聞部編譯、培訓編輯和責任編輯,亦曾從事審計與證券研究工作。2011年獲第一屆林語堂文學翻譯獎。譯有《紅隊測試》、《數位麵包屑裡的各種好主意》和《大鴻溝》等數十本書。(victranslates.blogspot.tw/)
书友短评:
@ sweetxiao 数学毁灭性武器:不透明,大规模应用,缺少反馈调整,造成伤害;作者提出业界数据分析师提高伦理考虑,很难, 了解一下大数据演算法为什么作者称之为,毁灭性武器:模型不透明,缺乏反馈与自我纠正机制,用模型得出的结论,反过来论证模型的科学性。公平正义不好用数学模型来表示出来,难以介入“信任”机制。1.避免大数据的毁灭性。2.利用具有毁灭性的大数据,如果我们是为了找出需要帮助的人,而不是把他们定义为应受惩罚的人,或许可能更好。 @ BYVoid 中心思想是美國左翼的論述,以平等爲核心。以下是作者對大數據和各種數學模型的批判:被定位者不知道自己的哪些特徵被定位模型開發者不懂自己的模型如何運作替代性指標模型偏見自我強化侵犯隱私打擊例外者,試圖用「像你這樣的人」來判斷你系統得不到回饋糾正 @ Momo 伪装的客观。后台算法就是不公平的。大数据时代下必然造成信息茧房。 @ Brill8023 本書討論的是大數據造就的數學毀滅性武器,它不透明,被大規模應用,以及會造成傷害。它會歧視窮人,醜化和加重窮人的經濟負擔,貸不到貸款也找不到工作,而作為一般民眾,你所能讀到,見到的內容,也早已被機器和演算法控制。這些,都是大數據的傲慢與偏見。 @ sweetxiao 数学毁灭性武器:不透明,大规模应用,缺少反馈调整,造成伤害;作者提出业界数据分析师提高伦理考虑,很难, 看的累死了。。。观点并不新颖 后面举例还乱七八糟。要不是作业要写报告真的不想看。。。 @ Momo 伪装的客观。后台算法就是不公平的。大数据时代下必然造成信息茧房。 @ Hsin 从互联网到大数据再到物联网、人工智能,技术的问题最后都是哲学伦理问题。是把双刃剑你还要不要拿起来? @ BYVoid 中心思想是美國左翼的論述,以平等爲核心。以下是作者對大數據和各種數學模型的批判:被定位者不知道自己的哪些特徵被定位模型開發者不懂自己的模型如何運作替代性指標模型偏見自我強化侵犯隱私打擊例外者,試圖用「像你這樣的人」來判斷你系統得不到回饋糾正
引言
第1章 數學炸彈元件:什麼是模型?
第2章 金融業震撼:一個量化分析師的幻滅之旅
第3章 軍備競賽:大學入學問題
第4章 宣傳機器:網路廣告
第5章 殃及池魚:大數據時代的執法問題
第6章 資格不符的第一關:艱難的求職者
第7章 隱形焦慮:恐慌的工作者
第8章 連帶傷害:當個人信用出了問題
第9章 沒有安全區:你想買保險嗎?
第10章 被瞄準的公民:現代人的科技生活
結語
致謝
· · · · · ·
添加微信公众号:好书天下获取
评论前必须登录!
注册