白话机器学习算法

书名:白话机器学习算法
作者:[新加坡]黄莉婷/[新加坡]苏川集
译者:武传海
ISBN:9787115506641
出版社:人民邮电出版社
出版时间:2019-2
格式:epub/mobi/azw3/pdf
页数:128
豆瓣评分: 6.7

书籍简介:

与使用数学语言或计算机编程语言讲解算法的书不同,本书另辟蹊径,用通俗易懂的人类语言以及大量有趣的示例和插图讲解10多种前沿的机器学习算法。内容涵盖k均值聚类、主成分分析、关联规则、社会网络分析等无监督学习算法,以及回归分析、k最近邻、支持向量机、决策树、随机森林、神经网络等监督学习算法,并概述强化学习算法的思想。任何对机器学习和数据科学怀有好奇心的人都可以通过本书构建知识体系。

作者简介:

黄莉婷(Annalyn Ng),高级数据分析师,剑桥大学心理测量中心硕士,曾受邀在迪士尼研究中心研究客户行为科学,并通过数据挖掘技术帮助三星和雅虎等公司制定营销和人员招聘等方面的策略。

苏川集(Kenneth Soo),斯坦福大学统计学硕士,华威大学高材生,曾从事网络随机故障下应用程序的双目标稳健优化研究,善于用通俗的语言介绍数据科学。

书友短评:

@ 一张韵 讲得太简单了,真的就是白话,薄薄一本还很贵。 @ fire 很薄,很基础,就是用大白话讲了点基础内容。。。 @ everfight 科普向的书 @ Nemo 入门级的书应该有的特点:技术产生背景,适用场景,优缺点,改进方式。写作上,逻辑清晰,有侧重点。这本书至少在这两个方面都达标了,让我这个门外汉对机器学习的术语入了门。推荐~ 把读书笔记放在 https://nemolaw.com/ 100多页卖40多块,还好没掏钱买。半小时翻完,书里没涉及到一点数学,适合科普。 @ song2li 有些太过简单。 @ Bayonetta 四六不懂的贱逼太多,都写了for the layman,这书很好的完成了预定目标 @ zz冬天也要早起 挺适合我这种毫无基础的人入门,有点基础的还是别看了(作者基本上就是在做名词解释 @ Frankel 作为一本入门书,把关键问题解释的很到位 @ vito 不涉及数学推导的机器学习书是不完整的,可以当做科普读物来看,讲了一些方法的要点,但还是不完整,也没有代码实现过程。从一张白纸想要了解机器学习是什么的同学可以一看,如果是要系统学习,那么这本书显然是不合适的。

书籍目录

第1章 基础知识 1
1.1 准备数据 1
1.1.1 数据格式 1
1.1.2 变量类型 2
1.1.3 变量选择 3
1.1.4 特征工程 3
1.1.5 缺失数据 4
1.2 选择算法 4
1.2.1 无监督学习 5
1.2.2 监督学习 6
1.2.3 强化学习 7
1.2.4 注意事项 7
1.3 参数调优 7
1.4 评价模型 9
1.4.1 分类指标 9
1.4.2 回归指标 10
1.4.3 验证 10
1.5 小结 11
第2章 k均值聚类 13
2.1 找出顾客群 13
2.2 示例:影迷的性格特征 13
2.3 定义群组 16
2.3.1 有多少个群组 16
2.3.2 每个群组中有谁 17
2.4 局限性 18
2.5 小结 19
第3章 主成分分析 21
3.1 食物的营养成分 21
3.2 主成分 22
3.3 示例:分析食物种类 24
3.4 局限性 27
3.5 小结 29
第4章 关联规则 31
4.1 发现购买模式 31
4.2 支持度、置信度和提升度 31
4.3 示例:分析杂货店的销售数据 33
4.4 先验原则 35
4.4.1 寻找具有高支持度的项集 36
4.4.2 寻找具有高置信度或高提升度的关联规则 37
4.5 局限性 37
4.6 小结 37
第5章 社会网络分析 39
5.1 展现人际关系 39
5.2 示例:国际贸易 40
5.3 Louvain方法 42
5.4 PageRank算法 43
5.5 局限性 46
5.6 小结 47
第6章 回归分析 49
6.1 趋势线 49
6.2 示例:预测房价 49
6.3 梯度下降法 52
6.4 回归系数 54
6.5 相关系数 55
6.6 局限性 56
6.7 小结 57
第7章 k最近邻算法和异常检测 59
7.1 食品检测 59
7.2 物以类聚,人以群分 60
7.3 示例:区分红白葡萄酒 61
7.4 异常检测 62
7.5 局限性 63
7.6 小结 63
第8章 支持向量机 65
8.1 医学诊断 65
8.2 示例:预测心脏病 65
8.3 勾画最佳分界线 66
8.4 局限性 69
8.5 小结 69
第9章 决策树 71
9.1 预测灾难幸存者 71
9.2 示例:逃离泰坦尼克号 72
9.3 生成决策树 73
9.4 局限性 74
9.5 小结 75
第10章 随机森林 77
10.1 集体智慧 77
10.2 示例:预测犯罪行为 77
10.3 集成模型 81
10.4 自助聚集法 82
10.5 局限性 83
10.6 小结 84
第11章 神经网络 85
11.1 建造人工智能大脑 85
11.2 示例:识别手写数字 86
11.3 神经网络的构成 89
11.4 激活规则 91
11.5 局限性 92
11.6 小结 94
第12章 A/B测试和多臂老虎机 95
12.1 初识A/B测试 95
12.2 A/B测试的局限性 95
12.3 epsilon递减策略 96
12.4 示例:多臂老虎机 97
12.5 胜者为先 99
12.6 epsilon递减策略的局限性 99
12.7 小结 100
附录A 无监督学习算法概览 101
附录B 监督学习算法概览 102
附录C 调节参数列表 103
附录D 更多评价指标 104
术语表 107
关于作者 114
· · · · · ·

  图灵程序设计丛书(共104册),这套丛书还有《JavaScript 悟道》《TensorFlow深度学习》《DevOps实践指南》《Erlang/OTP并发编程实战》《代码本色》等。

添加微信公众号:好书天下获取

添加微信公众号:“好书天下”获取书籍好书天下 » 白话机器学习算法
分享到: 更多 (0)

评论 抢沙发

评论前必须登录!

 

添加微信公众号:“好书天下”获取书籍

当当网十五万种图书